

COMUNE DI ARIZZANO (Provincia del V.C.O.)

Corso Roma n. 1 - 288 | | Arizzano (VB) tel. 0323 55 | 939 email protocollo@comune.arizzano.vb.it pec arizzano@pec.it

Oggetto:

LAVORI DI PRONTO INTERVENTO PER RIPRISTINO FUNZIONALITA' DELLA VIABILITA' COMUNALE A SEGUITO DEI DISSESTI CAUSATI DALLE FORTI PIOGGE DEL 07.06.2020:

- VIA MULINI (LOTTO A)
- VIALE DELLA VITTORIA (LOTTO B)

PROGETTO DEFINITIVO-ESECUTIVO

Elaborato n°: L2	Titolo elaborato: Relazione di calcolo opere strutturali frana Viale della Vittoria

luglio 2020

Scala:

Data:

Aggiornamento:

dott. ing. D'ELIA FRANCESCA

vicolo Quarto n. 1 - 28802 Mergozzo (VB)

tel. 348 | 320768

email: francesca.delia@libero.it pec: francesca.delia3@ingpec.eu

1. NORMATIVA DI RIFERIMENTO

I calcoli e le verifiche riportate nella presente relazione sono stati condotti con riferimento al disposto delle seguenti norme:

- Legge 5 novembre 1971, n. 1086 "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica";
- D.M. 17.01.2018 "Norme tecniche per le costruzioni";
- CIRCOLARE in data 21 gennaio 2019, n. 7 "Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018".

2. METODO E CODICI DI CALCOLO

I calcoli sono stati condotti adottando il metodo semiprobabilistico agli stati limite.

L'analisi strutturale condotta è stata del tipo: statica lineare e sismica statica lineare.

La ricerca dei parametri di sollecitazione è stata fatta secondo le disposizioni di carico più gravose avvalendosi di codici di calcolo automatico per l'analisi strutturale. Tali codici sono di sicura ed accertata validità e sono stati impiegati conformemente alle loro caratteristiche.

In particolare, è stato utilizzato il seguente programma di calcolo: Muri di sostegno MDC della soc. "Geostru".

3. CARATTERISTICHE E RESISTENZE DI CALCOLO DEI MATERIALI UTILIZZATI

Nell'esecuzione delle opere in oggetto è previsto l'utilizzo dei seguenti materiali:

Calcestruzzo

Classe di resistenza del calcestruzzo: C25/30 Classe di esposizione del calcestruzzo: XC2 Classe di consistenza del calcestruzzo: S4 Diametro massimo dell'aggregato: 20 mm Resistenza caratteristica cilindrica: fc,k ≥ 25 Mpa Resistenza caratteristica cubica: Rc,k ≥ 30 Mpa

Acciaio per armatura

Tipologia acciaio: B450C

Tensione caratteristica di rottura: $ft,k \ge 540$ Mpa Tensione caratteristica di snervamento: $fy,k \ge 450$ Mpa

Materiali impiegati realizzazione pali

Calcestruzzo: classe di resistenza C25/30

Acciaio tipo S355H

4. ZONIZZAZIONE SISMICA, VITA NOMINALE, CLASSE D'USO E GEOMETRIE

La struttura oggetto della presente relazione è localizzata in comune di Arizzano.

Lat./Long. [WGS84]: 45,95873 / 8,58856

I parametri che classificano la struttura sono:

Classe d'uso: II

Vita Nominale Vn: 50 anni Coefficiente d'uso Cu: 1 Periodo Vr: 50 anni

5. AZIONI

I valori delle azioni considerati nei calcoli sono quelli previsti dal D.M. 14.01.2018; in particolare sono stati considerati i carichi elementari di seguito riportati:

ELEMENTI STRUTTURALI

- Peso calcestruzzo armato = 2500 daN/mc

SPINTA DELLE TERRE

- Determinata con la teoria di Mononobe e Okabe
- Carico limite determinato con la teoria di Vesic

AZIONE SISMICA

L'analisi della struttura soggetta all'azione sismica è stata di tipo lineare.

Risposta locale del sisma: Categoria Sottosuolo: E Categoria Topografica: T2

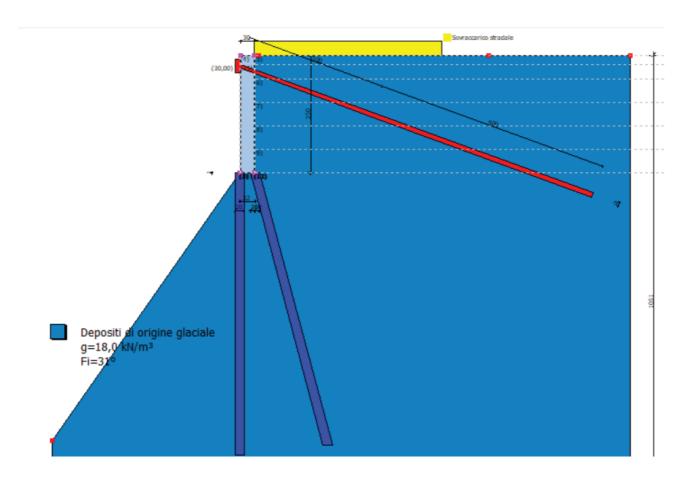
CARICHI STRADALI

E' stato considerato un sovraccarico distribuito di 20 kPa

6. CARATTERISTICHE GEOTECNICHE

Le stratigrafie sono state sviluppate sulla scorta della Relazione geologica e degli elaborati geologici, redatti dal dott. geol. Francesco D'Elia ed allegati al presente progetto.

7. ESITI DELLE VERIFICHE


Dati generali

Codice progetto	Frana Viale della Vittoria
Comune di	Viale della Vittoria - Arizzano (Vb)
Condizioni ambientali	Ordinarie
Zona	Arizzano
Lat./Long. [WGS84]	45,95873/8,58856
Normativa GEO	NTC 2018
Normativa STR	NTC 2018
Spinta	Mononobe & Okabe [M.O. 1929]

Dati generali muro

Altezza muro	60,0 cm
Spessore testa muro	30,0 cm
Risega muro lato valle	0,0 cm
Risega muro lato monte	0,0 cm
Sporgenza mensola a valle	1,0 cm
Sporgenza mensola a monte	1,0 cm
Svaso mensola a valle	0,0 cm
Altezza estremità mensola a valle	1,0 cm
Altezza estremità mensola a monte	1,0 cm
Pali	
Sezione dei pali	20,0 cm
Lunghezza dei pali	750,0 cm
Diametro tubolare	139,7 mm
Spessore tubolare	10 mm
Interasse longitudinale	100,0 cm
Disposizione in pianta	Sfalsati

A favore di sicurezza si assume che la berlinese sia fuori terra per un tratto pari a 2,50 metri; in tale tratto non potrà quindi contare sul contrasto del terreno di valle; si introduce quindi nella modellazione un paramento rigido fittizio che trasmette a quota -2,50 m le azioni flettenti e di taglio sulla berlinese.

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50,0 [anni]
Vita di riferimento: 50,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: E Categoria topografica: T2

S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]
S.L.O.	30,0	0,16	2,57	0,15
S.L.D.	50,0	0,20	2,53	0,18
S.L.V.	475,0	0,43	2,63	0,28
S.L.C.	975,0	0,52	2,71	0,31

Coefficienti sismici orizzontali e verticali

Opera: Classe II

S.L.	amax	beta	kh	kv
Stato limite	$[m/s^2]$	[-]	[-]	[sec]
S.L.O.	0,288	1,00	0,0294	0,0147
S.L.D.	0,360	0,47	0,0173	0,0086
S.L.V.	0,774	0,38	0,0300	0,0150
S.L.C.	0,936	1,00	0,0955	0,0477

Materiali impiegati realizzazione opere in c.a. C25/30 B450C Materiali impiegati realizzazione pali C25/30 S355H

Copriferro 3,0 cm

Stratigrafia

Ns	Spessore	Inclinazion	Peso unità	Angolo di	Coesione	Angolo di	Presenza di	Litologia	Descrizione
	strato	e dello	di volume	resistenza a	(kPa)	attrito terra	falda		
	(cm)	strato.	(KN/m^3)	taglio		muro	(Si/No)		
		(°)		(°)		(°)			
1	1051	0	18,00	31	0,00	21	No		Depositi di
									origine glaciale

Tiranti

Fattore di sicurezza 1,2
Cadute di tensione 1,0
Tensione tangenziale malta cemento 0,18 N/mm²

Prof.	Lung.	Lung.	Diam.	Diam.	Interasse	Inclinaz	Attr.	Adesione	Barra	Res.	Tiro
ancoraggio	Libera	ancorata	foro	Bulbo	(cm)	ione	terreno	(kPa)	dywid	Calcolo	(kN)
(cm)	(cm)	(cm)	(cm)	(cm)		(cm)	Tirante		ag	Acciaio	
							(°)			(N/mm^2)	
30,0	300,0	500,0	9,0	9,0	350,0	20,0	31,0	0,0	1Ø32	476,0	100,0

Carichi distribuiti

Descrizione	Ascissa iniziale	Ascissa finale	Valore iniziale	Valore finale	Profondità
	(cm)	(cm)	(kPa)	(kPa)	(cm)
Sovraccarico	0,0	400,0	20,0	20,0	0,0
stradale					

FATTORI DI COMBINAZIONE

A1+M1+R3

Nr.	Azioni	Fattore combinazione
1	Peso muro	1,00
2	Spinta terreno	1,30
3	Peso terreno mensola	1,30
4	Spinta falda	1,00
5	Spinta sismica in x	1,00
6	Spinta sismica in y	1,00
7	Tirante	0,00
8	Sovraccarico stradale	0,00

Nr.	Parametro	Coefficienti parziali
1	Tangente angolo res. taglio	1
2	Coesione efficace	1
3	Resistenza non drenata	1
4	Peso unità volume	1

Nr.	Carico limite	Coefficienti resistenze
1	Punta	1
2	Laterale compressione	1
3	Coefficiente totale	1
4	Laterale (trazione)	1
5	Orizzontale	1
	Riduzione resistenza	Parziale

A1+M1+R3 [GEO+STR]

Coefficiente sismico orizzontale Kh 0,030 0,015 Coefficiente sismico verticale Kv

CALCOLO SPINTE

Discretizzazione terreno

Q1	Quota iniziale strato (cm);
Qf	Quota finale strato
G	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
c	Coesione (kPa);
В	Angolo perpendicolare al paramento lato monte (°);
Note	Nelle note viene riportata la presenza della falda

Qi	Qf	G	Eps	Fi	Delta	c	В	Note
251,0	231,92	18,0	0,0	31,0	21,0	0,0	0,0	_
231,92	201,0	18,0	0,0	31,0	21,0	0,0	0,0	
201,0	151,0	18,0	0,0	31,0	21,0	0,0	0,0	
151,0	101,0	18,0	0,0	31,0	21,0	0,0	0,0	
101,0	51,0	18,0	0,0	31,0	21,0	0,0	0,0	
51,0	1,0	18,0	0,0	31,0	21,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

μ	Angolo di direzione della spinta.
Ka	Coefficiente di spinta attiva.
Kd	Coefficiente di spinta dinamica.
Dk	Coefficiente di incremento dinamico.
Kax, Kay	Componenti secondo x e y del coefficiente di spinta attiva.
Dkx, Dky	Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
21,0	0,29	0,3	0,02	0,27	0,1	0,02	0,01
21,0	0,29	0,3	0,02	0,27	0,1	0,02	0,01
21,0	0,29	0,3	0,02	0,27	0,1	0,02	0,01
21,0	0,29	0,3	0,02	0,27	0,1	0,02	0,01
21,0	0,29	0,3	0,02	0,27	0,1	0,02	0,01
21.0	0.29	0.3	0.02	0.27	0.1	0.02	0.01

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	251,0	231,92	0,29	0,11	240,31	240,31	
2	231,92	201,0	0,93	0,36	214,91	214,91	
3	201,0	151,0	2,69	1,03	173,73	173,73	
4	151,0	101,0	4,15	1,59	124,53	124,53	
5	101,0	51,0	5,61	2,15	74,91	74,91	
6	51,0	1,0	7,07	2,72	25,14	25,14	

CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a)

Py Peso del muro (kN); Px Forza inerziale (kN);

Xp, Yp Coordinate baricentro dei pesi (cm);

Quota	Px	Py	Xp	Yp	
231,92	0,04	1,4	16,0	241,4	
201,0	0,11	3,68	16,0	226,0	
151,0	0,22	7,35	16,0	201,0	
101,0	0,33	11,03	16,0	176,0	
51,0	0,44	14,71	16,0	151,0	
1,0	0,55	18,39	16,0	126,0	

Sollecitazioni sul muro

Quota Origine ordinata minima del muro (cm).

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

M Momento (kNm);

H Altezza sezione di calcolo (cm);

Quo	ta Fx	Fy	M	Н	
231,9	0,34	1,51	0,01	30,0	
201	,0 1,33	4,15	0,2	30,0	
151	,0 4,13	8,86	1,35	30,0	
101	,0 8,39	14,13	4,18	30,0	
51	,0 14,11	19,96	9,42	30,0	
1	,0 21,3	26,35	17,81	30,0	

Discretizzazione terreno

Qi Quota iniziale strato (cm);

Qf Quota finale strato

G Peso unità di volume (kN/m³); Eps Inclinazione dello strato. (°); Fi Angolo di resistenza a taglio (°);

Delta Angolo attrito terra muro;

c Coesione (kPa);

ß Angolo perpendicolare al paramento lato monte (°); Note Nelle note viene riportata la presenza della falda

Qi	Qf	G	Eps	Fi	Delta	c	В	Note
251,0	201,0	18,0	0,0	31,0	31,0	0,0	0,0	_
201,0	151,0	18,0	0,0	31,0	31,0	0,0	0,0	
151,0	101,0	18,0	0,0	31,0	31,0	0,0	0,0	
101,0	51,0	18,0	0,0	31,0	31,0	0,0	0,0	
51,0	1,0	18,0	0,0	31,0	31,0	0,0	0,0	
1,0	0,0	18,0	0,0	31,0	21,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.

Ka Coefficiente di spinta attiva.

Kd Coefficiente di spinta dinamica.

0,3

Dk Coefficiente di incremento dinamico. Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

0,02

μ Ka Kd Dk Kax Kay Dkx Dky 31,0 0,29 0,31 0,03 0,25 0,15 0,02 0,01 31,0 0,29 0,31 0,03 0,25 0,15 0,02 0,01 31,0 0,29 0,31 0,03 0,25 0,15 0,02 0,01 31,0 0,29 0,31 0,03 0,25 0,15 0,02 0,01 31,0 0,29 0,31 0,03 0,25 0,15 0,02 0,01

0,27

0,1

0,02

0,01

Spinte risultanti e punto di applicazione

0,29

21,0

Qi Quota inizio strato.

Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	251,0	201,0	1,16	0,69	221,16	221,16	
2	201,0	151,0	2,5	1,5	173,76	173,76	
3	151,0	101,0	3,84	2,31	124,54	124,54	
4	101,0	51,0	5,18	3,11	74,92	74,92	
5	51,0	1,0	6,53	3,92	25,14	25,14	
6	1,0	0,0	0,14	0,09	0,5	0,5	

SPINTE IN FONDAZIONE

Discretizzazione terreno

Qi Quota iniziale strato (cm);

Qf Quota finale strato

G Peso unità di volume (kN/m³); Eps Inclinazione dello strato. (°); Fi Angolo di resistenza a taglio (°); Delta Angolo attrito terra muro;

c Coesione (kPa);

Angolo perpendicolare al paramento lato monte (°);

Note Nelle note viene riportata la presenza della falda

Eps Qi Qf G Fi Delta ß Note c 1,0 0,0 18.0 180.0 31.0 21.0 0,0 180,0

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.

Kp Coefficiente di resistenza passiva.

Kpx, Kpy Componenti secondo x e y del coefficiente di resistenza passiva.

μ Kp Kpx Kpy

201,0 0,74 -0,69 -0,26

Spinte risultanti e punto di applicazione

Qi Quota inizio strato.

Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

Qi Qf Rpx Rpy z(Rpx) z(Rpy)

1 1,0 0,0 0,0 0,0 0,33 0,33

Sollecitazioni totali

Fx Forza in direzione x (kN);

Fy Forza in direzione y (kN);

M Momento (kNm);

	Fx	Fy	M
Spinta terreno	19,35	11,62	13,49
Peso muro	0,55	18,39	-2,25
Peso fondazione	0,0	0,07	-0,01
Sovraccarico	0,0	0,0	0,0
Terr. fondazione	0,01	0,59	-0,17
Spinte fondazione	0,0	0,0	0,0
	19,91	30,67	11,06

Momento	stabilizzante
Momento	ribaltante

-6,86 kNm 17,92 kN m

Verifica palo max sollecitato

	Forza orizzontale	9,96 kN	
	Forza verticale (P)	71,33 kN	
Dati palo)		
•			
	Lunghezza	600.0 cm	
	Lunghezza Diametro	600,0 cm 20,0 cm	
	_	600,0 cm 20,0 cm 3,0 cm	

Stratigrafia palo

Strato N° 1

Spessore strato	600,0 cm	
Peso unità di volume	18,0 KN/m³	
Angolo di attrito	31,0 °	
Coesione	0,0 kPa	
Modulo di elasticità	40000,0 kPa	
Modulo di reaz. orizzontale	200000,0 kN/m ³	

Spostamenti e rotazioni in testa al palo di valle

Lunghezza d'onda	70,51 cm	
Cedimento del palo	0,04 cm	
Spostamento in x	0,07 cm	
Rotazione in testa	0,06 °	

Pressione limite orizzontale in corrispondenza della lunghezza d'onda 118,95 kPa

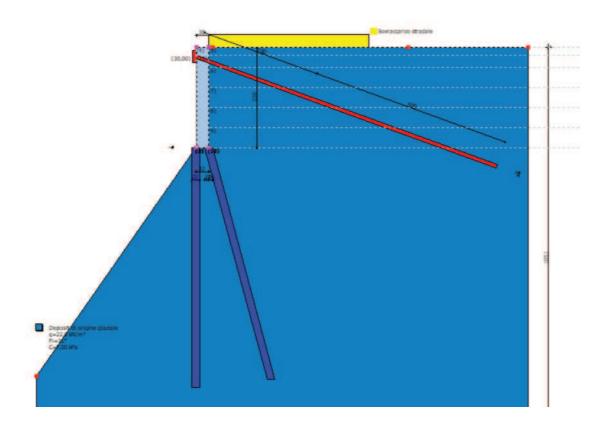
Carico limite verticale

Carico limite di punta (Qp)	92,75 kN
Carico limite laterale (Qs)	60,79 kN
Coefficiente di sicurezza punta (FsP)	1
Coefficiente di sicurezza laterale (FsL)	1
R=(Qp/Xi3)/FsP+(Qs/Xi3)/FsL	153,54 kN
Peso palo (W)	471,24 kg
Fattore di sicurezza Fs=R/(P+W)	2,02

Verifica palo in testa

Momento 0.0 kNm Sforzo normale 71.33 kN **Taglio** 9.96 kN Sforzo normale ultimo (Nu) 1400,19 kN Momento flettente ultimo (Mu) 59.99 kNm Stato verifica a flessione Sezione Verificata Resistenza a taglio tubolare (Vwd) 514,64 kN Misura Sicurezza Taglio Sezione Verificata

Verifica palo alla profondità di cm 90


Momento 2,32 kNm Sforzo normale 72,01 kN **Taglio** 0.0 kNSforzo normale ultimo (Nu) 1400,19 kN Momento flettente ultimo (Mu) 59,99 kNm Stato verifica a flessione Sezione Verificata Resistenza a taglio tubolare (Vwd) 514,64 kN Misura Sicurezza Taglio Sezione Verificata

Verifiche palo alla profondità di cm 140

Momento 0,91 kNm Sforzo normale 72,41 kN Taglio 0,0 kN Sforzo normale ultimo (Nu) 1400,19 kN Momento flettente ultimo (Mu) 59,99 kNm Stato verifica a flessione Sezione Verificata Resistenza a taglio tubolare (Vwd) 514,64 kN Misura Sicurezza Taglio Sezione Verificata

CONDIZIONE DI TERRENO SATURO

Anche in questa condizione ed a favore di sicurezza si assume che la berlinese sia fuori terra per un tratto pari a 2,5 m; in tale tratto non potrà quindi contare sul contrasto del terreno di valle; si introduce quindi nella modellazione un paramento rigido fittizio che trasmette a quota -2,50 m le azioni flettenti e di taglio sulla berlinese.

Dati generali

Codice progetto	Frana Viale della Vittoria	
Comune di	Viale della Vittoria - Arizzano (Vb)	
Condizioni ambientali	Ordinarie	
Zona	Arizzano	
Lat./Long. [WGS84]	45,95873/8,58856	
Normativa GEO	NTC 2018	
Normativa STR	NTC 2018	
Spinta	Mononobe & Okabe [M.O. 1929]	

Dati generali muro

Altezza muro	250,0 cm
Spessore testa muro	30,0 cm
Risega muro lato valle	0,0 cm
Risega muro lato monte	0,0 cm
Sporgenza mensola a valle	1,0 cm
Sporgenza mensola a monte	1,0 cm
Svaso mensola a valle	0,0 cm
Altezza estremità mensola a valle	1,0 cm
Altezza estremità mensola a monte	1,0 cm
Pali	
Sezione dei pali	20,0 cm
Lunghezza dei pali	600,0 cm
Diametro tubolare	139,7 mm
Spessore tubolare	10 mm
Distanza asse da estremità mensola	0,0 cm
Interasse longitudinale	100,0 cm
Disposizione in pianta	Sfalsati

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50,0 [anni]
Vita di riferimento: 50,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: E Categoria topografica: T2

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	[m/s²]	[-]	[sec]
	[anni]			
S.L.O.	30,0	0,16	2,57	0,15
S.L.D.	50,0	0,20	2,53	0,18
S.L.V.	475,0	0,43	2,63	0,28
S.L.C.	975,0	0,52	2,71	0,31

Coefficienti sismici orizzontali e verticali

Opera: Classe II

S.L.	amax	beta	kh	kv
Stato limite	[m/s²]	[-]	[-]	[sec]
S.L.O.	0,288	1,00	0,0294	0,0147
S.L.D.	0,360	0,47	0,0173	0,0086
S.L.V.	0,774	0,38	0,0300	0,015
S.L.C.	0,936	1,00	0,0955	0,0477

Materiali impiegati realizzazione opere in c.a. C25/30 B450C Materiali impiegati realizzazione pali C25/30 S355H

Copriferro 3,0 cm

Stratigrafia

Ns	Spessore	Inclinazio	Peso unità	Angolo di	Coesione	Angolo di	Presenza	Litologia	Descrizione
	strato	ne dello	di volume	resistenza	(kPa)	attrito	di falda		
	(cm)	strato.	(kN/m^3)	a taglio		terra	(Si/No)		
		(°)		(°)		muro			
		'				(°)			
1	1051	0	22,00	31	7,50	21	Si		Depositi di
									origine glaciale

Tiranti

Fattore di sicurezza 1,2
Cadute di tensione 1,0
Tensione tangenziale malta cemento 0,18 N/mm²

	Prof.	Lung.	Lung.	Diam.	Diam.	Interasse	Inclinazi	Attr.	Adesione	Barra	Res.	Tiro
	ancorag.	Libera	ancorata	foro	Bulbo	(cm)	one	terreno	(kPa)	dywidag	Calcolo	(kN)
	(cm)	(cm)	(cm)	(cm)	(cm)		(cm)	Tirante			Acciaio	
	'							(°)			(N/mm^2)	
İ	30,0	300,0	500,0	9,0	9,0	350,0	20,0	31,0	7,5	1Ø32	476,0	100,0

Carichi distribuiti

Descrizione	Ascissa iniziale	Ascissa finale	Valore iniziale	Valore finale	Profondità
	(cm)	(cm)	(kPa)	(kPa)	(cm)
Sovraccarico	0,0	400,0	20,0	20,0	0,0
stradale					

FATTORI DI COMBINAZIONE A1+M1+R3

Nr.	Azioni	Fattore combinazione
1	Peso muro	1,00
2	Spinta terreno	1,30
3	Peso terreno mensola	1,30
4	Spinta falda	1,00
5	Spinta sismica in x	1,00
6	Spinta sismica in y	1,00
7	Tirante	0,00
8	Sovraccarico stradale	0,00

Nr.	Parametro	Coefficienti parziali
1	Tangente angolo res. taglio	1
2	Coesione efficace	1
3	Resistenza non drenata	1
4	Peso unità volume	1

Nr.	Carico limite	Coefficienti resistenze
1	Punta	1
2	Laterale compressione	1
3	Coefficiente totale	1
4	Laterale (trazione)	1
5	Orizzontale	1
	Riduzione resistenza	Parziale

A1+M1+R3 [GEO+STR]

Coefficiente sismico orizzontale Kh 0,030 Coefficiente sismico verticale Kv 0,015

Quota iniziale strato (cm);

CALCOLO SPINTE

Discretizzazione terreno

Qi

	•	•	` //							
(Qf	Quota finale stra	ato							
(G	Peso unità di vo	lume (KN/m	n³);						
]	Eps	Inclinazione del	lo strato. (°)	•						
]	Fi	Angolo di resist	enza a taglio	o (°);						
J	Delta	Angolo attrito terra muro;								
(c Coesione (kPa);									
ſ	В	Angolo perpendicolare al paramento lato monte (°);								
Ţ	Note	Nelle note viene	e riportata la	presenza della	a falda					
Qi	Q	f G	Eps	Fi	Delta	c	В	Note		
251,0	231.	,92 22,0	0,0	31,0	21,0	7,5	0,0	Falda		
231,92	201	,0 22,0	0,0	31,0	21,0	7,5	0,0	Falda		
201,0	151	,0 22,0	0,0	31,0	21,0	7,5	0,0	Falda		
151,0	101	,0 22,0	0,0	31,0	21,0	7,5	0,0	Falda		
101,0	51.	,0 22,0	0,0	31,0	21,0	7,5	0,0	Falda		
51,0	1,0	0 22,0	0,0	31,0	21,0	7,5	0,0	Falda		
Qi 251,0 231,92 201,0 151,0 101,0	231, 201 151 101 51,	f G .92 22,0 .0 22,0 .0 22,0 .0 22,0 .0 22,0 .0 22,0	Eps 0,0 0,0 0,0 0,0 0,0 0,0	Fi 31,0 31,0 31,0 31,0 31,0 31,0	21,0 21,0 21,0 21,0 21,0 21,0	7,5 7,5 7,5 7,5 7,5	0,0 0,0 0,0 0,0 0,0)))		

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.
 Ka Coefficiente di spinta attiva.
 Kd Coefficiente di spinta dinamica.
 Dk Coefficiente di incremento dinamico.

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
21,0	0,29	0,32	0,04	0,27	0,1	0,04	0,01
21,0	0,29	0,32	0,04	0,27	0,1	0,04	0,01
21,0	0,29	0,32	0,04	0,27	0,1	0,04	0,01
21,0	0,29	0,32	0,04	0,27	0,1	0,04	0,01
21,0	0,29	0,32	0,04	0,27	0,1	0,04	0,01
21,0	0,29	0,32	0,04	0,27	0,1	0,04	0,01

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	251,0	231,92	0,39	0,08	240,06	241,59	
2	231,92	201,0	1,35	0,12	214,75	216,83	
3	201,0	151,0	4,07	0,15	173,61	177,19	
4	151,0	101,0	6,41	0,11	124,48	127,67	
5	101,0	51,0	8,75	0,07	74,89	78,78	
6	51,0	1,0	11,17	0,05	24,99	20,13	

CARATTERISTICHE MURO (Peso, Baricentro, Inerzia)

Py Peso del muro (kN); Px Forza inerziale (kN);

Xp, Yp Coordinate baricentro dei pesi (cm);

Quota	Px	Py	Xp	Yp	
231,92	0,04	1,4	16,0	241,4	
201,0	0,11	3,68	16,0	226,0	
151,0	0,22	7,35	16,0	201,0	
101,0	0,33	11,03	16,0	176,0	
51,0	0,44	14,71	16,0	151,0	
1,0	0,55	18,39	16,0	126,0	

Sollecitazioni sul muro

Quota Origine ordinata minima del muro (cm).

Fx Forza in direzione x (kN);

Fy Forza in direzione y (kN);

M Momento (kNm);

H Altezza sezione di calcolo (cm);

Quota	Fx	Fy	M	Н	
231,92	0,43	1,48	0,02	30,0	
201,0	1,85	3,87	0,33	30,0	
151,0	6,03	7,7	2,18	30,0	
101,0	12,55	11,49	6,72	30,0	
51,0	21,42	15,23	15,1	30,0	
1,0	32,7	18,96	28,51	30,0	

Discretizzazione terreno

Qi Quota iniziale strato (cm);

Qf Quota finale strato

G Peso unità di volume (KN/m³);

Eps Inclinazione dello strato. (°);

Fi Angolo di resistenza a taglio (°);

Delta Angolo attrito terra muro;

c Coesione (kPa);

β Angolo perpendicolare al paramento lato monte (°);

Note Nelle note viene riportata la presenza della falda

	Qi	Qf	G	Eps	Fi	Delta	c	В	Note
-	251,0	201,0	22,0	0,0	31,0	31,0	7,5	0,0	Falda
	201,0	151,0	22,0	0,0	31,0	31,0	7,5	0,0	Falda
	151,0	101,0	22,0	0,0	31,0	31,0	7,5	0,0	Falda
	101,0	51,0	22,0	0,0	31,0	31,0	7,5	0,0	Falda
	51,0	1,0	22,0	0,0	31,0	31,0	7,5	0,0	Falda
	1,0	0,0	22,0	0,0	31,0	21,0	7,5	0,0	Falda

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.

Ka Coefficiente di spinta attiva.

Kd Coefficiente di spinta dinamica.

Dk Coefficiente di incremento dinamico.

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
31,0	0,29	0,33	0,04	0,25	0,15	0,04	0,02
31,0	0,29	0,33	0,04	0,25	0,15	0,04	0,02
31,0	0,29	0,33	0,04	0,25	0,15	0,04	0,02
31,0	0,29	0,33	0,04	0,25	0,15	0,04	0,02
31,0	0,29	0,33	0,04	0,25	0,15	0,04	0,02
21,0	0,29	0,32	0,04	0,27	0,1	0,04	0,01

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	251,0	201,0	1,73	0,3	220,38	226,92	
2	201,0	151,0	4,07	0,24	173,61	177,19	
3	151,0	101,0	6,41	0,17	124,48	127,66	
4	101,0	51,0	8,75	0,1	74,89	78,75	
5	51,0	1,0	11,17	0,07	25,0	20,46	
6	1,0	0,0	0,25	0,02	0,5	0,5	

SPINTE IN FONDAZIONE

Discretizzazione terreno

Qi Quota iniziale strato (cm);

Qf Quota finale strato

G Peso unità di volume (KN/m³); Eps Inclinazione dello strato. (°);

Fi Angolo di resistenza a taglio (°); Delta Angolo attrito terra muro;

c Coesione (kPa);

Angolo perpendicolare al paramento lato monte (°);

Note Nelle note viene riportata la presenza della falda

Qi	Qf	G	Eps	Fi	Delta	c	В	Note
1,0	0,0	22,0	180,0	31,0	21,0	7,5	180,0	Falda

Coefficienti di spinta ed inclinazioni

 μ Angolo di direzione della spinta.

Kp Coefficiente di resistenza passiva.

Kpx, Kpy Componenti secondo x e y del coefficiente di resistenza passiva.

μ	Kp	Kpx	Kpy	
201,0	0,74	-0,69	-0,26	

Spinte risultanti e punto di applicazione

Qi Quota inizio strato.

Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	1,0	0,0	-0,12	0,0	0,5	0,0	

Sollecitazioni totali

Fx Forza in direzione x (kN);

Fy Forza in direzione y (kN);

M Momento (kNm);

	Fx	Fy	M
Spinta terreno	32,39	0,9	27,93
Peso muro	0,55	18,39	-2,25
Peso fondazione	0,0	0,07	-0,01
Sovraccarico	0,0	0,0	0,0
Terr. fondazione	0,02	0,72	-0,2
Spinte fondazione	-0,12	0,0	0,0
	32,84	20,08	25,47

Momento stabilizzante -3,47 kNm Momento ribaltante 28,93 kN m

Verifica palo max sollecitato

Forza orizzontale	16,48 kN
Forza verticale (P)	100,46 kN

Dati palo

Lunghezza	600,0 cm
Diametro	20,0 cm
Copriferro	3,0 cm
Palo trivellato	

Stratigrafia palo

Strato N° 1

Spessore strato	600,0 cm	
Peso unità di volume	$12,19 \text{ kN/m}^3$	
Angolo di attrito	31,0 °	
Coesione	7,5 kPa	
Modulo di elasticità	40000,0 kPa	
Modulo di reaz. orizzontale	200000,0 kN/m ³	

Spostamenti e rotazioni in testa al palo di valle

Lunghezza d'onda	70,51 cm	
Cedimento del palo	0,06 cm	
Spostamento in x	0,12 cm	
Rotazione in testa	0,1 °	

Pressione limite orizzontale in corrispondenza della lunghezza d'onda 148,07 kPa

Carico limite verticale

Carico limite di punta (Qp)	73,16 kN
Carico limite laterale (Qs)	66,63 kN
Coefficiente di sicurezza punta (FsP)	1
Coefficiente di sicurezza laterale (FsL)	1
R=(Qp/Xi3)/FsP+(Qs/Xi3)/FsL	139,79 kN
Peso palo (W)	471,24 kg
Fattore di sicurezza Fs=R/(P+W)	1,33

Verifica palo in testa

Momento	0,0 kNm
Sforzo normale	100,46 kN
Taglio	16,48 kN
Sforzo normale ultimo (Nu)	1400,19 kN
Momento flettente ultimo (Mu)	59,69 kNm
Stato verifica a flessione	Sezione Verificata
Resistenza a taglio tubolare (Vwd) 514,64 kN
Misura Sicurezza Taglio	Sezione Verificata

Verifica palo alla profondità di cm 90

Momento 3,83 kNm Sforzo normale 101,14 kN Taglio 0,0 kN Sforzo normale ultimo (Nu) 1400,19 kN Momento flettente ultimo (Mu) 59,69 kNm Stato verifica a flessione Sezione Verificata Resistenza a taglio tubolare (Vwd) 514,64 kN Misura Sicurezza Taglio Sezione Verificata

Verifiche palo alla profondità di cm 140

Momento 1,51 kNm Sforzo normale 101,55 kN Taglio 0,0 kN Sforzo normale ultimo (Nu) 1400,19 kN Momento flettente ultimo (Mu) 59,69 kNm Stato verifica a flessione Sezione Verificata Resistenza a taglio tubolare (Vwd) 514,64 kN Misura Sicurezza Taglio Sezione Verificata

Analisi di stabilità dei pendii con: BISHOP (1955)

	=======================================
Calcolo eseguito secondo	NTC 2018
Numero di strati	1,0
Numero dei conci	10,0
Grado di sicurezza ritenuto accettabile	1,0
Coefficiente parziale resistenza	1,2
Parametri geotecnici da usare. Angolo di attrito:	Picco
Superficie di forma circolare	

......

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	3,25 m
Ordinata vertice sinistro inferiore yi	7,82 m
Ascissa vertice destro superiore xs	6,77 m
Ordinata vertice destro superiore ys	11,34 m
Passo di ricerca	10,0
Numero di celle lungo x	10,0
Numero di celle lungo y	10,0
Coefficiente azione sismica orizzontale	0,03
Coefficiente azione sismica verticale	0,015

Vertici profilo

Nr	X	у
	(m)	(m)
1	1,0	-0,7
2	5,0	5,01
3	5,01	5,01
4	5,31	7,51
5	5,31	7,51
6	10,31	7,51
7	13,31	7,51
8	17,06	7,51

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili	1,0 0,0
Favorevoli: Permanenti, variabili	1,0 0,0

Coefficienti parziali per i parametri geotecnici del terreno

	========
Tangente angolo di resistenza al taglio	1,0
Coesione efficace	1,0
Coesione non drenata	1,0
Riduzione parametri geotecnici terreno	Si

Stratigrafia

Strato	Coesione (kg/cm²)	Coesione non drenata (kg/cm²)	Angolo resistenza al taglio (°)	Peso unità di volume (kg/m³)	Peso saturo (kg/m³)	Litologia	
1	0,075		31	1800	2200	Depositi di	
						origine	
						glaciale	

Pali

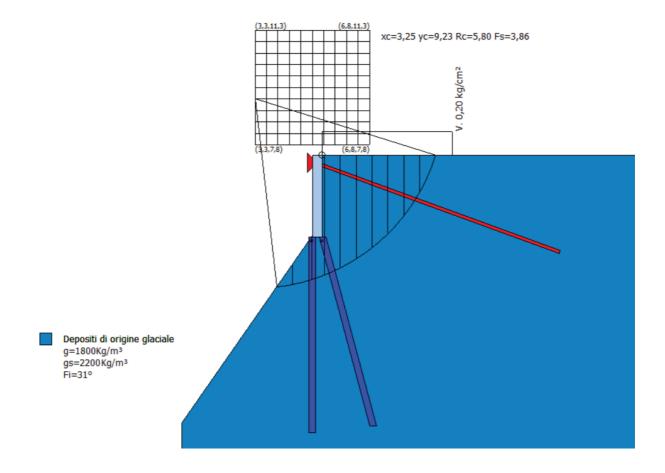
N°	X	у	Diametro	Lunghezza	Inclinazione	Interasse	Resistenza	Momento	Metodo
	(m)	(m)	(m)	(m)	(°)	(m)	al taglio	plasticizzazi	stabilizzazio
							(kg/cm²)	one	ne
								(kN*m)	
1	4,9	5	0,2	6	90	1	20	-	Tensione
									tangenziale
2	5,22	5	0,2	6	75	1	20		Tensione
									tangenziale

Tiranti

N°	x (m)	y (m)	Lunghezza libera (m)	Lunghezza ancorata (m)	Diametro del bulbo (m)	Inclinazione (°)	Tiro (kg)
1	5,01	7,319191	3	5	0,09	20	2900

Carichi distribuiti

N° xi		yi	xf	yf	Carico esterno	
	(m)	(m)	(m)	(m)	(kg/cm²)	
1	5,31	7,51	9,309999	7,51	0,2	


Risultati analisi pendio [A2+M2+R2 (Sisma)]

	=======================================
Fs minimo individuato	3,86
Ascissa centro superficie	3,25 m
Ordinata centro superficie	9,23 m
Raggio superficie	5,8 m

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.

xc = 3,251 yc = 9,229 Rc = 5,803 Fs = 3,86

Nr.	B m	Alfa (°)	Li m	Wi (kg)	Kh•Wi (kg)	Kv•Wi (kg)	c (kg/cm²)	Fi (°)	Ui N'i (kg) (kg)	Ti (kg)
1	0,49	9,0	0,49	344,35	10,33	5,17	0,08	31,0	0,0 329,0	123,7
2	0,59	14,5	0,61 1	300,45	39,01	19,51	0,08	31,0	0,0 1274,4	266,1
3	0,38	19,5	0,4 2	539,06	76,17	38,09	0,08	31,0	0,0 2553,1	397,4
4	0,49	24,2	0,53 5	205,42	156,16	78,08	0,08	31,0	0,0 5354,4	782,2
5	0,49	29,6	0,56 49	935,54	148,07	74,03	0,08	31,0	0,0 5237,1	771,3
6	0,49	35,3	0,6 4	597,17	137,92	68,96	0,08	31,0	0,0 5095,1	758,9
7	0,49	41,5	0,65 4	175,76	125,27	62,64	0,08	31,0	0,0 4914,3	744,2
8	0,49	48,3	0,73 3	646,59	109,4	54,7	0,08	31,0	0,0 4666,6	725,5
9	0,49	56,2	0,88 2	961,78	88,85	44,43	0,08	31,0	0,0 4283,7	2187,6
10	0,49	66,7	1,23	1735,5	52,06	26,03	0,08	31,0	0,0 3009,3	592,4

8. CONCLUSIONI

Al fine di fornire un giudizio motivato di accettabilità dei risultati, come richiesto al § 10.2 NTC18, il sottoscritto progettista strutturale assevera di aver:

- a) controllato accuratamente i tabulati di calcolo;
- b) confrontato i risultati del software con quelli ottenuti con semplici calcoli di massima;
- c) esaminato gli stati tensionali e deformativi e di ritenerli consistenti e coerenti con la schematizzazione e modellazione della struttura.

Il sottoscritto, pertanto, ritiene che i risultati riportati nel presente elaborato siano corretti e che il progetto strutturale sia conforme alle Leggi 1086/71 e al DM 17/01/2018 (Norme tecniche per le costruzioni).

Mergozzo, luglio 2020

dott. ing. Francesca D'Elia